Actualmente están siendo desarrollados en paralelo diferentes tipos de motores para su uso en vehículos futuros. Entre ellos están incluidos sistemas híbridos, ciento por ciento eléctricos y propulsores de combustión altamente eficientes. El hidrógeno representa una alternativa potencial a los combustibles convencionales o sintéticos (e-fuels) en los motores de combustión, tal y como aparece reflejado en un estudio realizado por Porsche Engineering.
Motor de hidrógeno de alto rendimiento para autos de pasajeros
Hoy están siendo diseñados motores de hidrógeno en todo el mundo, sin embargo, en la mayoría de los casos su desarrollo está previsto para vehículos comerciales con una potencia específica relativamente baja de alrededor de 68 CV (50 kW) por litro de cilindrada. “Para el sector de los autos de pasajeros, esto es insuficiente. Sin embargo, nosotros desarrollamos un prototipo de motor de combustión de hidrógeno que tiene como objetivo igualar la potencia y el par de los actuales propulsores de gasolina de altas prestaciones. Al mismo tiempo, también nos habíamos marcado el objetivo de lograr un bajo consumo de combustible y mantener las emisiones al mismo nivel que el aire del medio ambiente”, dijo Vincenzo Bevilacqua, experto senior del departamento de Simulación de Motores en Porsche Engineering. “El punto de partida de nuestro estudio fue un motor de gasolina de ocho cilindros y 4.4 litros existente, o más bien, su conjunto de datos digitales, ya que realizamos todo el estudio virtualmente utilizando simulaciones de rendimiento del motor”.
Las modificaciones llevadas a cabo incluyeron una relación de compresión más alta, una combustión adaptada al hidrógeno y, lo más importante, un nuevo sistema de sobrealimentación por turbo. “Para una combustión limpia de hidrógeno, los turbocompresores deben, por un lado, proporcionar alrededor del doble de masa de aire que en los motores de gasolina; por otro lado, sin embargo, las temperaturas más bajas de los gases de escape disminuyen la energía en el lado del escape”, dijo Bevilacqua. No es posible resolver esta discrepancia con los turbocompresores convencionales. Por ello, Porsche Engineering examinó cuatro conceptos alternativos de sobrealimentación mediante turbocompresores, algunos de ellos derivados del automovilismo deportivo.
En todos estos conceptos entran en juego varios turbocompresores asistidos eléctricamente, que se combinan en ocasiones con válvulas de control adicionales o con compresores de accionamiento eléctrico. “En los estudios realizados, cada sistema de turboalimentación mostró ventajas y desventajas específicas. La elección adecuada depende en gran medida de los requisitos del motor de hidrógeno en cuestión”, dijo Bevilacqua. En el caso del motor elegido para este proyecto, el equipo de desarrollo se decantó por un sistema de turboalimentación con compresores en paralelo. La característica distintiva de este diseño es la disposición coaxial de dos etapas del compresor, que son accionadas por la turbina o por el motor eléctrico de apoyo mediante un eje común. El aire fluye a través del primer compresor, es enfriado en el intercooler y luego vuelve a ser comprimido en la segunda etapa.
Con alrededor de 598 CV (440 kW), el motor de hidrógeno ofrece una potencia similar a la del motor de gasolina original. Para evaluar su rendimiento, Porsche Engineering lo probó en un vehículo de referencia del segmento de lujo con un peso total relativamente alto de 2650 kg en el trazado Nordschleife de Nürburgring, aunque de manera completamente virtual. El test fue llevado a cabo usando lo que se conoce como un gemelo digital, es decir, una representación por computador del vehículo real. Con un tiempo por vuelta de 8 minutos y 20 segundos, el auto demostró un alto potencial en términos de dinámica y prestaciones. Debido a su composición química, el hidrógeno no libera hidrocarburos ni monóxido de carbono durante su combustión. Y, por supuesto, tampoco intervienen partículas. En términos de optimización de las emisiones del motor de hidrógeno, los expertos de Porsche Engineering se concentraron entonces en los óxidos de nitrógeno. Así, tras una serie de pruebas exhaustivas, adaptaron la estrategia operativa del motor para lograr una combustión lo más limpia posible. La clave fue mantener bajo el nivel de emisiones brutas por medio de una combustión extremadamente pobre y, por lo tanto, más fría, lo que permite prescindir de un sistema de tratamiento posterior de gases de escape.
“Al final resultó que las emisiones de óxido de nitrógeno se situaron muy por debajo de los límites que fija la normativa Euro 7 (en vigor a partir de 2025), cercanas a cero en todo el mapa del motor”, dijo Matthias Böger, ingeniero especialista del departamento de Simulación de Motores en Porsche Engineering. Para contextualizar mejor los resultados de las pruebas de emisiones, hace una comparación con el índice de calidad del aire, que las autoridades gubernamentales y otras instituciones utilizan como punto de referencia para evaluar el nivel de contaminación. En general, una concentración de hasta 40 microgramos de óxido de nitrógeno por metro cúbico es considerada una buena calidad del aire. “Las emisiones del motor de hidrógeno están por debajo de este límite. Su funcionamiento, por lo tanto, no tiene un impacto significativo en el medio ambiente”, dijo Böger.
Hasta un cinco por ciento menos de consumo
Además de sus emisiones prácticamente insignificantes, el motor de hidrógeno ofrece una elevada eficiencia en materia de consumo de combustible, tanto en el ciclo de homologación WLTP como en otros ciclos relevantes para el usuario. Y esto se debe a su combustión pobre. “Hemos cumplido así un objetivo que nos habíamos propuesto en este proyecto: el desarrollo de un motor de hidrógeno limpio y prestacional, pero a la vez económico”, dijo Bevilacqua. Por otra parte, el costo derivado de la producción en serie de un motor de hidrógeno podría ser equiparable al de un motor de gasolina. Aunque el sistema de sobrealimentación y una serie de componentes mecánicos asociados al hidrógeno son más complejos y, por lo tanto, más caros, no es necesario el tratamiento posterior de gases de escape que sí lo es en un propulsor de gasolina que pretenda cumplir con la normativa Euro 7.
El equipo de Porsche Engineering pudo realizar todas las pruebas de una manera virtual y muy eficiente, mediante un proceso de simulación. “Solo necesitamos seis meses para completar el estudio, desde la idea inicial hasta su finalización”, dijo Bevilacqua. “Durante este tiempo tuvimos que crear nuevos modelos de simulación, capaces de tener en cuenta las diferentes propiedades químicas y físicas del hidrógeno en comparación con la gasolina”.
Un motor con gran potencial
Es poco probable que el motor de hidrógeno entre en producción en su forma actual, pero de todos modos esa no era la finalidad del proyecto. El objetivo era examinar el potencial técnico de este sistema de propulsión que emplea una energía alternativa y ampliar las capacidades de las herramientas de ingeniería existentes. “El estudio nos permitió obtener información valiosa sobre el desarrollo de motores de hidrógeno de alto rendimiento y agregar modelos y métodos específicos para este combustible a nuestra metodología de simulación virtual”, dijo Bevilacqua. “Con este conocimiento, estamos listos para manejar de manera eficiente futuros proyectos de clientes”.
Una vuelta simulada al circuito de Nürburgring
Velocidad máxima: 261 km/h
Tiempo: 8:20.20 minutos
Potencia simulada del motor: 598 CV (440 kW)
Información
Artículo publicado en la edición número 2/2022 de la revista Porsche Engineering.
Texto: Richard Backhaus
Derechos de autor: las imágenes y el sonido aquí publicados tienen derechos de autor de Dr. Ing. h.c. F. Porsche AG, Alemania, u otras personas. Está prohibida la reproducir total o parcial sin autorización escrita de Dr. Ing. h.c. F. Porsche AG. Por favor, contacte con newsroom@porsche.com para más información.